Dirichlet problems for stationary von Neumann-Landau wave equations

نویسنده

  • Zeqian Chen
چکیده

It is known that von Neumann-Landau wave equation can present a mathematical formalism of motion of quantum mechanics, that is an extension of Schrödinger's wave equation. In this paper, we concern with the Dirichlet problem of the stationary von Neumann-Landau wave equation: where Ω is a bounded domain in R n. By introducing anti-inner product spaces, we show the existence and uniqueness of the generalized solution for the above Dirichlet problem by functional-analytic methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

Torsional wave propagation in 1D and two dimensional functionally graded rod

In this study, torsional wave propagation is investigated in a rod that are made of one and two dimensional functionally graded material. Firstly, the governing equations of the wave propagation in the functionally graded cylinder derived in polar coordinate. Secondly, finite difference method is used to discretize the equations. The Von Neumann stability approach is used to obtain the time ste...

متن کامل

Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control

settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control Mehdi Badra To cite this version: Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccatibased strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008